3.3.22 \(\int \frac {1}{\sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{3/2}} \, dx\) [222]

Optimal. Leaf size=125 \[ \frac {\left (\frac {1}{4}-\frac {i}{4}\right ) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{3/2} d}+\frac {\sqrt {\tan (c+d x)}}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {7 \sqrt {\tan (c+d x)}}{6 a d \sqrt {a+i a \tan (c+d x)}} \]

[Out]

(1/4-1/4*I)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/a^(3/2)/d+7/6*tan(d*x+c)^(1/2)/a/
d/(a+I*a*tan(d*x+c))^(1/2)+1/3*tan(d*x+c)^(1/2)/d/(a+I*a*tan(d*x+c))^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.18, antiderivative size = 125, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {3640, 3677, 12, 3625, 211} \begin {gather*} \frac {\left (\frac {1}{4}-\frac {i}{4}\right ) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{3/2} d}+\frac {7 \sqrt {\tan (c+d x)}}{6 a d \sqrt {a+i a \tan (c+d x)}}+\frac {\sqrt {\tan (c+d x)}}{3 d (a+i a \tan (c+d x))^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[Tan[c + d*x]]*(a + I*a*Tan[c + d*x])^(3/2)),x]

[Out]

((1/4 - I/4)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(a^(3/2)*d) + Sqrt[Tan[
c + d*x]]/(3*d*(a + I*a*Tan[c + d*x])^(3/2)) + (7*Sqrt[Tan[c + d*x]])/(6*a*d*Sqrt[a + I*a*Tan[c + d*x]])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3625

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
-2*a*(b/f), Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3640

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[a*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(2*f*m*(b*c - a*d))), x] + Dist[1/(2*a*m*(b*c - a*d))
, Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[b*c*m - a*d*(2*m + n + 1) + b*d*(m + n + 1)*Tan
[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2
+ d^2, 0] && LtQ[m, 0] && (IntegerQ[m] || IntegersQ[2*m, 2*n])

Rule 3677

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*A + b*B)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(2*
f*m*(b*c - a*d))), x] + Dist[1/(2*a*m*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Si
mp[A*(b*c*m - a*d*(2*m + n + 1)) + B*(a*c*m - b*d*(n + 1)) + d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x], x], x], x
] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] &&  !GtQ[n,
0]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {\tan (c+d x)} (a+i a \tan (c+d x))^{3/2}} \, dx &=\frac {\sqrt {\tan (c+d x)}}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {\int \frac {\frac {5 a}{2}-i a \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}} \, dx}{3 a^2}\\ &=\frac {\sqrt {\tan (c+d x)}}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {7 \sqrt {\tan (c+d x)}}{6 a d \sqrt {a+i a \tan (c+d x)}}+\frac {\int \frac {3 a^2 \sqrt {a+i a \tan (c+d x)}}{4 \sqrt {\tan (c+d x)}} \, dx}{3 a^4}\\ &=\frac {\sqrt {\tan (c+d x)}}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {7 \sqrt {\tan (c+d x)}}{6 a d \sqrt {a+i a \tan (c+d x)}}+\frac {\int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx}{4 a^2}\\ &=\frac {\sqrt {\tan (c+d x)}}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {7 \sqrt {\tan (c+d x)}}{6 a d \sqrt {a+i a \tan (c+d x)}}-\frac {i \text {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{2 d}\\ &=\frac {\left (\frac {1}{4}-\frac {i}{4}\right ) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{a^{3/2} d}+\frac {\sqrt {\tan (c+d x)}}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {7 \sqrt {\tan (c+d x)}}{6 a d \sqrt {a+i a \tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.91, size = 158, normalized size = 1.26 \begin {gather*} -\frac {i e^{-4 i (c+d x)} \sqrt {\frac {a e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}} \left (-1-7 e^{2 i (c+d x)}+8 e^{4 i (c+d x)}+3 e^{3 i (c+d x)} \sqrt {-1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\frac {e^{i (c+d x)}}{\sqrt {-1+e^{2 i (c+d x)}}}\right )\right )}{6 \sqrt {2} a^2 d \sqrt {\tan (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[Tan[c + d*x]]*(a + I*a*Tan[c + d*x])^(3/2)),x]

[Out]

((-1/6*I)*Sqrt[(a*E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]*(-1 - 7*E^((2*I)*(c + d*x)) + 8*E^((4*I)*(c
+ d*x)) + 3*E^((3*I)*(c + d*x))*Sqrt[-1 + E^((2*I)*(c + d*x))]*ArcTanh[E^(I*(c + d*x))/Sqrt[-1 + E^((2*I)*(c +
 d*x))]]))/(Sqrt[2]*a^2*d*E^((4*I)*(c + d*x))*Sqrt[Tan[c + d*x]])

________________________________________________________________________________________

Maple [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 463 vs. \(2 (98 ) = 196\).
time = 0.18, size = 464, normalized size = 3.71

method result size
derivativedivides \(\frac {\left (\sqrt {\tan }\left (d x +c \right )\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (3 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{3}\left (d x +c \right )\right )-9 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )+28 i \left (\tan ^{2}\left (d x +c \right )\right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}+9 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{2}\left (d x +c \right )\right )-36 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}-3 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a +64 \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\right )}{24 d \,a^{2} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (-\tan \left (d x +c \right )+i\right )^{3} \sqrt {-i a}}\) \(464\)
default \(\frac {\left (\sqrt {\tan }\left (d x +c \right )\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (3 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{3}\left (d x +c \right )\right )-9 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )+28 i \left (\tan ^{2}\left (d x +c \right )\right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}+9 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{2}\left (d x +c \right )\right )-36 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}-3 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a +64 \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\right )}{24 d \,a^{2} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (-\tan \left (d x +c \right )+i\right )^{3} \sqrt {-i a}}\) \(464\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/24/d*tan(d*x+c)^(1/2)*(a*(1+I*tan(d*x+c)))^(1/2)*(3*I*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+
I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^3-9*I*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/
2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)+28*I*(-I*a)^(1/2)*(a
*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)^2+9*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan
(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^2-36*I*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*
x+c)))^(1/2)-3*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/
(tan(d*x+c)+I))*a+64*tan(d*x+c)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2))/a^2/(a*tan(d*x+c)*(1+I*tan
(d*x+c)))^(1/2)/(-tan(d*x+c)+I)^3/(-I*a)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is undefined.

________________________________________________________________________________________

Fricas [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 320 vs. \(2 (91) = 182\).
time = 0.45, size = 320, normalized size = 2.56 \begin {gather*} \frac {{\left (3 \, a^{2} d \sqrt {-\frac {i}{2 \, a^{3} d^{2}}} e^{\left (3 i \, d x + 3 i \, c\right )} \log \left (\frac {1}{2} \, a^{2} d \sqrt {-\frac {i}{2 \, a^{3} d^{2}}} e^{\left (i \, d x + i \, c\right )} + \frac {1}{4} \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}\right ) - 3 \, a^{2} d \sqrt {-\frac {i}{2 \, a^{3} d^{2}}} e^{\left (3 i \, d x + 3 i \, c\right )} \log \left (-\frac {1}{2} \, a^{2} d \sqrt {-\frac {i}{2 \, a^{3} d^{2}}} e^{\left (i \, d x + i \, c\right )} + \frac {1}{4} \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}\right ) + \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (8 \, e^{\left (4 i \, d x + 4 i \, c\right )} + 9 \, e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}\right )} e^{\left (-3 i \, d x - 3 i \, c\right )}}{12 \, a^{2} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/12*(3*a^2*d*sqrt(-1/2*I/(a^3*d^2))*e^(3*I*d*x + 3*I*c)*log(1/2*a^2*d*sqrt(-1/2*I/(a^3*d^2))*e^(I*d*x + I*c)
+ 1/4*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(
e^(2*I*d*x + 2*I*c) + 1)) - 3*a^2*d*sqrt(-1/2*I/(a^3*d^2))*e^(3*I*d*x + 3*I*c)*log(-1/2*a^2*d*sqrt(-1/2*I/(a^3
*d^2))*e^(I*d*x + I*c) + 1/4*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2
*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) + 1)) + sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d
*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(8*e^(4*I*d*x + 4*I*c) + 9*e^(2*I*d*x + 2*I*c) + 1))*e^(-3*I*d*x -
 3*I*c)/(a^2*d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{\frac {3}{2}} \sqrt {\tan {\left (c + d x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/tan(d*x+c)**(1/2)/(a+I*a*tan(d*x+c))**(3/2),x)

[Out]

Integral(1/((I*a*(tan(c + d*x) - I))**(3/2)*sqrt(tan(c + d*x))), x)

________________________________________________________________________________________

Giac [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 878 vs. \(2 (91) = 182\).
time = 1.70, size = 878, normalized size = 7.02 \begin {gather*} \frac {{\left (i \, a \sqrt {{\left | a \right |}} - {\left | a \right |}^{\frac {3}{2}}\right )} \log \left (-\frac {i \, {\left (\frac {\sqrt {2} \sqrt {i \, a \tan \left (d x + c\right ) + a} {\left (-\frac {i \, {\left | a \right |}}{a} + 1\right )} {\left | a \right |}^{\frac {3}{2}}}{a^{2}} - \frac {\sqrt {-2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a + 2 \, a^{2}} {\left (\frac {\tan \left (d x + c\right )}{\sqrt {\frac {{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} - 2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a + a^{2}}{a^{2}}}} + 1\right )} {\left | a \right |}}{a^{2}}\right )}^{2} + 8 \, \sqrt {2} - 12}{2 \, {\left (-\frac {1}{2} i \, {\left (\frac {\sqrt {2} \sqrt {i \, a \tan \left (d x + c\right ) + a} {\left (-\frac {i \, {\left | a \right |}}{a} + 1\right )} {\left | a \right |}^{\frac {3}{2}}}{a^{2}} - \frac {\sqrt {-2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a + 2 \, a^{2}} {\left (\frac {\tan \left (d x + c\right )}{\sqrt {\frac {{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} - 2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a + a^{2}}{a^{2}}}} + 1\right )} {\left | a \right |}}{a^{2}}\right )}^{2} + 4 \, \sqrt {2} + 6\right )}}\right )}{8 \, a^{3} d} - \frac {2 \, \sqrt {2} {\left (3 \, {\left (\frac {\sqrt {2} \sqrt {i \, a \tan \left (d x + c\right ) + a} {\left (-\frac {i \, {\left | a \right |}}{a} + 1\right )} {\left | a \right |}^{\frac {3}{2}}}{a^{2}} - \frac {\sqrt {-2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a + 2 \, a^{2}} {\left (\frac {\tan \left (d x + c\right )}{\sqrt {\frac {{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} - 2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a + a^{2}}{a^{2}}}} + 1\right )} {\left | a \right |}}{a^{2}}\right )}^{4} a \sqrt {{\left | a \right |}} + 3 i \, {\left (\frac {\sqrt {2} \sqrt {i \, a \tan \left (d x + c\right ) + a} {\left (-\frac {i \, {\left | a \right |}}{a} + 1\right )} {\left | a \right |}^{\frac {3}{2}}}{a^{2}} - \frac {\sqrt {-2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a + 2 \, a^{2}} {\left (\frac {\tan \left (d x + c\right )}{\sqrt {\frac {{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} - 2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a + a^{2}}{a^{2}}}} + 1\right )} {\left | a \right |}}{a^{2}}\right )}^{4} {\left | a \right |}^{\frac {3}{2}} - 72 i \, {\left (\frac {\sqrt {2} \sqrt {i \, a \tan \left (d x + c\right ) + a} {\left (-\frac {i \, {\left | a \right |}}{a} + 1\right )} {\left | a \right |}^{\frac {3}{2}}}{a^{2}} - \frac {\sqrt {-2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a + 2 \, a^{2}} {\left (\frac {\tan \left (d x + c\right )}{\sqrt {\frac {{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} - 2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a + a^{2}}{a^{2}}}} + 1\right )} {\left | a \right |}}{a^{2}}\right )}^{2} a \sqrt {{\left | a \right |}} + 72 \, {\left (\frac {\sqrt {2} \sqrt {i \, a \tan \left (d x + c\right ) + a} {\left (-\frac {i \, {\left | a \right |}}{a} + 1\right )} {\left | a \right |}^{\frac {3}{2}}}{a^{2}} - \frac {\sqrt {-2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a + 2 \, a^{2}} {\left (\frac {\tan \left (d x + c\right )}{\sqrt {\frac {{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} - 2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a + a^{2}}{a^{2}}}} + 1\right )} {\left | a \right |}}{a^{2}}\right )}^{2} {\left | a \right |}^{\frac {3}{2}} - 112 \, a \sqrt {{\left | a \right |}} - 112 i \, {\left | a \right |}^{\frac {3}{2}}\right )}}{3 \, {\left ({\left (\frac {\sqrt {2} \sqrt {i \, a \tan \left (d x + c\right ) + a} {\left (-\frac {i \, {\left | a \right |}}{a} + 1\right )} {\left | a \right |}^{\frac {3}{2}}}{a^{2}} - \frac {\sqrt {-2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a + 2 \, a^{2}} {\left (\frac {\tan \left (d x + c\right )}{\sqrt {\frac {{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} - 2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a + a^{2}}{a^{2}}}} + 1\right )} {\left | a \right |}}{a^{2}}\right )}^{2} - 4 i\right )}^{3} a^{3} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

1/8*(I*a*sqrt(abs(a)) - abs(a)^(3/2))*log(-1/2*(I*(sqrt(2)*sqrt(I*a*tan(d*x + c) + a)*(-I*abs(a)/a + 1)*abs(a)
^(3/2)/a^2 - sqrt(-2*(I*a*tan(d*x + c) + a)*a + 2*a^2)*(tan(d*x + c)/sqrt(((I*a*tan(d*x + c) + a)^2 - 2*(I*a*t
an(d*x + c) + a)*a + a^2)/a^2) + 1)*abs(a)/a^2)^2 + 8*sqrt(2) - 12)/(-1/2*I*(sqrt(2)*sqrt(I*a*tan(d*x + c) + a
)*(-I*abs(a)/a + 1)*abs(a)^(3/2)/a^2 - sqrt(-2*(I*a*tan(d*x + c) + a)*a + 2*a^2)*(tan(d*x + c)/sqrt(((I*a*tan(
d*x + c) + a)^2 - 2*(I*a*tan(d*x + c) + a)*a + a^2)/a^2) + 1)*abs(a)/a^2)^2 + 4*sqrt(2) + 6))/(a^3*d) - 2/3*sq
rt(2)*(3*(sqrt(2)*sqrt(I*a*tan(d*x + c) + a)*(-I*abs(a)/a + 1)*abs(a)^(3/2)/a^2 - sqrt(-2*(I*a*tan(d*x + c) +
a)*a + 2*a^2)*(tan(d*x + c)/sqrt(((I*a*tan(d*x + c) + a)^2 - 2*(I*a*tan(d*x + c) + a)*a + a^2)/a^2) + 1)*abs(a
)/a^2)^4*a*sqrt(abs(a)) + 3*I*(sqrt(2)*sqrt(I*a*tan(d*x + c) + a)*(-I*abs(a)/a + 1)*abs(a)^(3/2)/a^2 - sqrt(-2
*(I*a*tan(d*x + c) + a)*a + 2*a^2)*(tan(d*x + c)/sqrt(((I*a*tan(d*x + c) + a)^2 - 2*(I*a*tan(d*x + c) + a)*a +
 a^2)/a^2) + 1)*abs(a)/a^2)^4*abs(a)^(3/2) - 72*I*(sqrt(2)*sqrt(I*a*tan(d*x + c) + a)*(-I*abs(a)/a + 1)*abs(a)
^(3/2)/a^2 - sqrt(-2*(I*a*tan(d*x + c) + a)*a + 2*a^2)*(tan(d*x + c)/sqrt(((I*a*tan(d*x + c) + a)^2 - 2*(I*a*t
an(d*x + c) + a)*a + a^2)/a^2) + 1)*abs(a)/a^2)^2*a*sqrt(abs(a)) + 72*(sqrt(2)*sqrt(I*a*tan(d*x + c) + a)*(-I*
abs(a)/a + 1)*abs(a)^(3/2)/a^2 - sqrt(-2*(I*a*tan(d*x + c) + a)*a + 2*a^2)*(tan(d*x + c)/sqrt(((I*a*tan(d*x +
c) + a)^2 - 2*(I*a*tan(d*x + c) + a)*a + a^2)/a^2) + 1)*abs(a)/a^2)^2*abs(a)^(3/2) - 112*a*sqrt(abs(a)) - 112*
I*abs(a)^(3/2))/(((sqrt(2)*sqrt(I*a*tan(d*x + c) + a)*(-I*abs(a)/a + 1)*abs(a)^(3/2)/a^2 - sqrt(-2*(I*a*tan(d*
x + c) + a)*a + 2*a^2)*(tan(d*x + c)/sqrt(((I*a*tan(d*x + c) + a)^2 - 2*(I*a*tan(d*x + c) + a)*a + a^2)/a^2) +
 1)*abs(a)/a^2)^2 - 4*I)^3*a^3*d)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(tan(c + d*x)^(1/2)*(a + a*tan(c + d*x)*1i)^(3/2)),x)

[Out]

int(1/(tan(c + d*x)^(1/2)*(a + a*tan(c + d*x)*1i)^(3/2)), x)

________________________________________________________________________________________